During the last two years, the Google Quantum AI team has made progress in understanding the physics governing quantum annealers. We recently applied these new insights to construct proof-of-principle optimization problems and programmed these into the D-Wave 2X quantum annealer that Google operates jointly with NASA. The problems were designed to demonstrate that quantum annealing can offer runtime advantages for hard optimization problems characterized by rugged energy landscapes.
We found that for problem instances involving nearly 1000 binary variables, quantum annealing significantly outperforms its classical counterpart, simulated annealing. It is more than 108 times faster than simulated annealing running on a single core. We also compared the quantum hardware to another algorithm called Quantum Monte Carlo. This is a method designed to emulate the behavior of quantum systems, but it runs on conventional processors. While the scaling with size between these two methods is comparable, they are again separated by a large factor sometimes as high as 108.
![]() |
Time to find the optimal solution with 99% probability for different problem sizes. We compare Simulated Annealing (SA), Quantum Monte Carlo (QMC) and D-Wave 2X. Shown are the 50, 75 and 85 percentiles over a set of 100 instances. We observed a speedup of many orders of magnitude for the D-Wave 2X quantum annealer for this optimization problem characterized by rugged energy landscapes. For such problems quantum tunneling is a useful computational resource to traverse tall and narrow energy barriers. |
We should note that there are algorithms, such as techniques based on cluster finding, that can exploit the sparse qubit connectivity in the current generation of D-Wave processors and still solve our proof-of-principle problems faster than the current quantum hardware. But due to the denser connectivity of next generation annealers, we expect those methods will become ineffective. Also, in our experience we find that lean stochastic local search techniques such as simulated annealing are often the most competitive for hard problems with little structure to exploit. Therefore, we regard simulated annealing as a generic classical competition that quantum annealing needs to beat. We are optimistic that the significant runtime gains we have found will carry over to commercially relevant problems as they occur in tasks relevant to machine intelligence.
For details please refer to http://arxiv.org/abs/1512.02206.
Related Post:
computer
- Take a better selfie with Lily
- Free Lecture The Psychology of Computer Insecurity
- MOOC Research and Innovation
- Calculating Ada The Countess of Computing
- Creating a templated Binary Search Tree Class in C
- Projecting without a projector sharing your smartphone content onto an arbitrary display
- Will a robot take your job
- Facebook Introduces ‘Hack ’ the programming language of the future
- High Resolution Scary Haunted House Wallpapers for Desktop
- TYBSC IT Sem V Question Papers 2009 Mumbai University
- Home automation update
- Very easy to download youtube videos audio mp3 format
- HD Dark Desktop Background Wallpapers Download
- Launching the Quantum Artificial Intelligence Lab
- Syrias children learn to code with the Raspberry Pi
- Running omxplayer from the command line easily using alias
- Largest collection of Google Logos on the web Set 7
- Collection of SQL queries with Answer and Output Set 2
- Prevent access to specific partition or drive
- Summer Games Learn to Program
- PiAUISuite Update and Voicecommand v3 1
- Sign in to edx org with Google and Facebook and
- Large Scale Machine Learning for Drug Discovery
- Hacker Tricks from Insiders A Threat to ERP Systems
can
annealing
0 comments:
Post a Comment