The ImageNet large-scale visual recognition challenge (ILSVRC) is the largest academic challenge in computer vision, held annually to test state-of-the-art technology in image understanding, both in the sense of recognizing objects in images and locating where they are. Participants in the competition include leading academic institutions and industry labs. In 2012 it was won by DNNResearch using the convolutional neural network approach described in the now-seminal paper by Krizhevsky et al.[4]
In this year’s challenge, team GoogLeNet (named in homage to LeNet, Yann LeCuns influential convolutional network) placed first in the classification and detection (with extra training data) tasks, doubling the quality on both tasks over last years results. The team participated with an open submission, meaning that the exact details of its approach are shared with the wider computer vision community to foster collaboration and accelerate progress in the field.

This effort was accomplished by using the DistBelief infrastructure, which makes it possible to train neural networks in a distributed manner and rapidly iterate. At the core of the approach is a radically redesigned convolutional network architecture. Its seemingly complex structure (typical incarnations of which consist of over 100 layers with a maximum depth of over 20 parameter layers), is based on two insights: the Hebbian principle and scale invariance. As the consequence of a careful balancing act, the depth and width of the network are both increased significantly at the cost of a modest growth in evaluation time. The resultant architecture leads to over 10x reduction in the number of parameters compared to most state of the art vision networks. This reduces overfitting during training and allows our system to perform inference with low memory footprint.

These technological advances will enable even better image understanding on our side and the progress is directly transferable to Google products such as photo search, image search, YouTube, self-driving cars, and any place where it is useful to understand what is in an image as well as where things are.
References:
[1] Erhan D., Szegedy C., Toshev, A., and Anguelov, D., "Scalable Object Detection using Deep Neural Networks", The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 2147-2154.
[2] Girshick, R., Donahue, J., Darrell, T., & Malik, J., "Rich feature hierarchies for accurate object detection and semantic segmentation", arXiv preprint arXiv:1311.2524, 2013.
[3] Howard, A. G., "Some Improvements on Deep Convolutional Neural Network Based Image Classification", arXiv preprint arXiv:1312.5402, 2013.
[4] Krizhevsky, A., Sutskever I., and Hinton, G., "Imagenet classification with deep convolutional neural networks", Advances in neural information processing systems, 2012.
Related Post:
a
- Take a better selfie with Lily
- Calculating Ada The Countess of Computing
- Creating a templated Binary Search Tree Class in C
- Projecting without a projector sharing your smartphone content onto an arbitrary display
- Will a robot take your job
- Hacker Tricks from Insiders A Threat to ERP Systems
- Forget Turing the Lovelace Test Has a Better Shot at Spotting AI
- A Billion Words Because todays language modeling standard should be higher
- Apple is building a car
- A step closer to quantum computation with Quantum Error Correction
- Could you fly a fighter jet with your mind
- Mounting the home directory on a different drive on the Raspberry Pi
- How Google Translate squeezes deep learning onto a phone
- The Plan to Build a Massive Online Brain for All the World’s Robots
- A Beginner’s Guide to Deep Neural Networks
- How to Copy or Hide a File inside an Image
- The life of a software engineer
- A Farewell to Orkut
- A Project on Windows NT
- Building A Visual Planetary Time Machine
- 10 awesome internet hacks to make your life better
- Google Databoard A new way to explore industry research
- How to put a flash mp3 player in blogger post
- A year and a bit with Inbox Zero
- Map of Life A preview of how to evaluate species conservation with Google Earth Engine
computer
- Take a better selfie with Lily
- Free Lecture The Psychology of Computer Insecurity
- MOOC Research and Innovation
- Calculating Ada The Countess of Computing
- When can Quantum Annealing win
- Creating a templated Binary Search Tree Class in C
- Projecting without a projector sharing your smartphone content onto an arbitrary display
- Will a robot take your job
- Facebook Introduces ‘Hack ’ the programming language of the future
- High Resolution Scary Haunted House Wallpapers for Desktop
- TYBSC IT Sem V Question Papers 2009 Mumbai University
- Home automation update
- Very easy to download youtube videos audio mp3 format
- HD Dark Desktop Background Wallpapers Download
- Launching the Quantum Artificial Intelligence Lab
- Syrias children learn to code with the Raspberry Pi
- Running omxplayer from the command line easily using alias
- Largest collection of Google Logos on the web Set 7
- Collection of SQL queries with Answer and Output Set 2
- Prevent access to specific partition or drive
- Summer Games Learn to Program
- PiAUISuite Update and Voicecommand v3 1
- Sign in to edx org with Google and Facebook and
- Large Scale Machine Learning for Drug Discovery
- Hacker Tricks from Insiders A Threat to ERP Systems
0 comments:
Post a Comment